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Analysis of Linear Noisy Two-Ports Using
Scattering Waves

RUDOLF P. HECKEN

In honor of Prof. H. Déring (Aachen, W. Germany) who celebrated his 70th birthday in 1981

Abstract— This paper proposes a new approach to the use of scattering
waves for spot noise analysis of linear N-ports. Noise as a stationary,
stochastic process is approximated by an infinite series of partial noise
waves. This allows the use of the scattering matrix formalism and signal
flowgraph theory. The noise waves lead to a new set of three dimensionless,
characteristic noise parameters. Methods to determine these parameters
are simple. With these parameters, the theory of noise minimization is
straightforward and the definition of constant noise circles uncomplicated.
The effect of losses in noise matching networks is shown to be more
significant in very low noise amplifiers than usually assumed.

I. INTRODUCTION

HE THEORY OF noisy, linear two-ports is well estab-

lished and has provided the basis for optimizing the
performance of low-noise amplifiers. Especially in the mi-
crowave frequency range, this theory is very powerful in
design and evaluation of devices and amplifiers. The repre-
sentation of spot noise! in terms of scattering waves is not
new [2]-[4], [7] but the theory has been based on the
classical work by Rothe and Dahlke [1] who arrive at an
impedance or admittance representation of noise parame-
ters. In this paper we will present briefly, an independent
derivation of noise waves based on terminal voltages and
currents as stationary stochastic processes. This approach
leads to a new set of characteristic noise parameters and to
simple methods of determining them experimentally. With
these parameters, the theory of minimizing amplifier noise
by noise matching is straightforward, and the definition of
constant noise circles [8] in the Smith chart is very simple.
Moreover, it is shown that even small resistive losses in
matching networks can significantly increase the noise
figure of amplifiers using very low-noise microwave GaAs
FET’s.

First we deal with the derivation of spot noise waves and
the formulation of scattered noise waves for linear N-ports.
This theory is then applied to the single complex imped-
ance and to the linear, noisy two-port (Sections IV and V).
This leads us to the familiar circles of constant noise factor
(Section VI) and to the theory of noise minimization
(Section VII). In Sections VIII and IX, we explain a simple
measurement method of the noise parameters and investi-
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gate the effect of losses in matching networks on the
optimum noise figure.
II. NOISE WAVES AS STATIONARY STOCHASTIC
PROCESSES

The terminal voltages and currents at an arbitrary port
of a linear N-port are defined in Fig. 1. We assume both as
stationary stochastic processes and form two new processes
defined by the linear transformation

a(t)=4(v(1)+2i(1))/\Z (1a)
b(t)=4(o(t)—Zi(1))/\Z (1b)

where Z is a time-independent normalizing quantity with
the dimension of an impedance. It is well. known that v(#)
and i(t) can be approximated by the series [5]

1 +o0 .
o(t)=—= 3 Ve (2a)
\/§n=—oo
and
1 + o0 )
i(=m= 3 L (2b)

2

with the complex coefficients ¥, and I, being orthogonal
and uncorrelated, ie., E{V,V*}=0 and E{I,I};}=0 for
n#m, where E{-} denotes statistical expectation. The
approximation can be made arbitrarily close by letting Aw
approach zero. Combining (2) with (1) shows that a(¢) and
b(¢t) are then also approximated by two series of the same
form

n=—0oQ

+ 00

a(t)z% S A, elnber (3a)
n=—oo
and
+ o0
b(t);-\/% S B einder (3b)
n=—00

where the coefficients A4, and B, are related to the ¥, and
1, by

4,=3(V,+2L,)/z (4a)

. They are, therefore, also complex, orthogonal, and uncorre-
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Fig. 1. Definition of currents and voltages of a linear N-port.

lated: E{4, A%} and E{B,B}}=0 for n#=m. Equation (4)
is identical to the standard definition of scattered waves for
sinusoidal processes. According to (3), a(¢) and b(r) can,
therefore, be interpreted as two processes which consist of
an infinite sum of scattered noise waves with complex
amplitudes 4, and B, located on the frequency axis at
n-Aw. The noise properties of a linear N-port can thus be
studied at any frequency spot n-Aw using the scattering
matrix formalism developed for single-frequency excita-
tion.

III. NOISE ANALYSIS WITH THE SCATTERING

MATRIX

In the following, we will introduce the new notation
A=A, =A(nAw) and B=B,=B(nAw), thus omitting the
subscript n. It is well known that for a linear N-port the
departing wave B, at an arbitrary port i (i=1,2,---,N) is
related to all incident waves 4, (j=1,2,- - -, N) through the
scattering coefficients S, evaluated in our case at n-Aw.
However, because of inherent noise sources in the noisy
N-port, we have to assume that in general all departing
noise waves will contain components which are indepen-
dent of all incident waves. Denoting this independent,
departing noise wave at port i by B,,, the complete set of
linear equations relating the noise waves can be written as

B =84, +8,4,+ - -S\yAy + B,
By =84, +8ypA,+ ---S,pAy +B,
By =8y A\ + Sy Ay + - SyyAy + B, (5)
In matrix notation (5) is written as
[B]=[S]-[4]+]B,]. (6)

[4], [B], and [B,] are N-element column matrices, and [S]
is an N XN square matrix. In general all wave sources are
correlated.

IV. APPLICATION TO A SINGLE COMPLEX
IMPEDANCE

In the case of a single complex impedance Z,, used as a
one-port as shown in Fig. 2a, (5) reduces to
B=S,A+B,

()
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Fig. 2. Noise waves of a complex impedance. (a) Definition of source
voltage. (b) Signal flowgraph of the one-port noise source.

with S being the internal reflection coefficient
_Z,—Z
s Z+Z

(8)

and Z the normalizing impedance as before. From Nyquist’s
theorem [5] we know that the open-circuit noise voltage at
the terminals is given by

V,=\2\2kT,Af-(Z,+Z7)

()

where Z* is the complex conjugate of Z_, k the Boltzmann
constant, 7, the absolute temperature of the impedance,
and A f the effective bandwidth. (The factor v2 stems from
the definition of the complex coefficients in (2) and (3) as
“peak values.”) Applying the transformation (4) to the
terminal quantities ¥ and I yields for the equivalent noise
wave

1Z,+Z]

B, =|2kTAf-/1-5S* AR

(10)
Fig. 2(b) shows a signal flowgraph representation of the
complex impedance. Note that the average power in the
departing noise wave B, is given by
pa=3E{B,BX)}=kT,Af(1—|S,|?).

gqs=gs

(11)

Terminating the one-port with an impedance Z; at T=0 K
yields the relations

A=p, B (12)
and
B
.
B= 5,5, (13)
where p; is the terminating reflection coefficient
Z,—Z
0= . 14
L7 Z,+Z (14)

The noise power absorbed in Z; is thus given by
Pavs = 2E{BB*} —E{AA4*}
or with (11), (12), and (13)

(1-8,8*)(1—p.p})

e (v () R
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The maximum available noise power kT,A f is delivered to
the “cold” load Z; if p, =S} or Z, =Z}.

V. THE NOISE FACTOR OF A LINEAR NOISY
Two-PorT

A case of great interest to the design engineer is the
noise analysis of linear amplifiers. A basic circuit is shown
in Fig. 3. In this configuration, the active, linear two-port is
connected via a lossless “noise matching network” to a

source with impedance Z, at standard temperature T, and

terminated with a cold? load impedance Z; . The analysis is
simplified by using signal flow graphs as shown in Fig.
3(b). Here the S,‘j are the scattering coefficients of the
matching network and the S, those of the active two-port
as given by (5) with N=2. S, and p; are the reflection
coefficients of the source and load, respectively. We will
assume further that the source impedance Z; and the load
impedance Z, are purely resistive and equal to the normal-
izing impedance Z. This simplifies the discussion and
corresponds to the practical situation in which device and
network parameters are determined under well-matched,
specific impedance conditions. With this choice, S, =0 and
o =0.

The departing noise wave B, at the output becomes by
inspecting Fig. 3(b)

S202521
” 1-—S2°2S“ a

AWAY
21921 qu. (16)
1—~S2°2S”

It is advantageous to introduce the linear transformations
B,=S,B,+B, (17a)
B, =8B, (17b)

into (16), thus referring the noise wave B, to equivalent
noise sources at the input of the noisy two-port. With this
step, which is analogous to the procedure developed in [1],
one obtains a simple relation showing more clearly the
interaction between the noisy two-port and the matching
network

S21

B,=——=—|S)B,+B,+S)B,,|.
1—S£2S11 [ ‘I]

(18)

It is obvious that the newly defined, equivalent noise
sources, B,; and B,,, also are, in general, correlated (as are
B, and B,). Therefore, it is principally possible to mini-
mize their contribution by properly adjusting S of the
input matching network. This is conveniently shown by
means of the noise factor. Since the available noise power
is given by .

b= %E{BzBf}

the noise factor F as defined in [6] becomes, in terms of

(18),
F=1+

E{B,B}+SnSp*E{ BB} +SpE{B, B} } +S)*E{B};B,,}
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Fig. 3. Noise matching of an active linear two-port. (a) Block diagram.

(b) Associated signal flowgraphs.
This expression can be simplified by introducing the nor-
malized quantities
— E {B tlB l*; }
E{BB}}

qsqs

9 (20a)

and
_ E{BtZB;E}
E{B,B:}’

gqs="4qs

92 (20b)

The cross-correlation terms E{B;,B%} and E{B}B,,} will
be replaced by introducing the complex cross-correlation
factor

_ E{B;B3)
VE{B,B3)E{B,,B})

(1)

12

With (20a), (20b), and (21) the noise factor becomes

Szozszoz*‘h +4, +Vq,9, (T125202 +F;k2S2()2*)

F=1+
1— 85 S%*

e

Note that we made use of the condition S S3*=1—S%S%*
assuming that the matching network is lossless. The non-
negative, real parameters ¢, and ¢, and the complex corre-
lation factor I';, are inherent to the noisy two-port. They
are characteristic of the noise behavior and have, therefore,
fundamental importance.

VI. CIrcLES OF CONSTANT NOISE FACTORS

In the following, we will show that (22) defines the
familiar circles of constant noise factors [8] in the complex

SHSH*E{B, B*}

2The assumption made here of a “cold” load impedance is not neces-
sary. However, it simplifies the argument considerably.

(19)

qs=—qs

plane of the output reflection coefficient S55. For conveni-
ence we introduce the “excess” noise factor F,=F—1 and
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Fig. 4. Circles of constant noise figure.

rearrange (22) as follows:
SHSH*+0*Sp*+0Sp =M (23)

where the complex quantity Q and the real value M stand

for .
—r V992
Q""I‘IZF'Z_*,ql (24)
L~
M= ET (25)

Equation (23) can also be written in the form
(S5 +0*)(SS+0*)*=M+|Q|?

from which the desired result immediately follows:

Sy =—Q*+/M+|Q|%e/¥ (27)

with ¢ being an arbitrary angle. Equation (27) defines the
location and radius of a family of circles in the plane of S5
which are solely dependent on the given noise factor F and
the characteristic noise parameters of the two-port. The
centers of these circles are located at S,, = — Q* and their
radii are given with yM+|Q|?. Examples are shown in
Fig. 4 with the noise figure (NF) being the noise factor in
decibels (i.e., NF=10log F).

VIIL

The lowest, optimum noise factor Fy, (01 F, o, = Fopy — 1)
is conveniently found by using a complex phasor notation
for S% and T,

(26)

THE OpTIMUM NOISE FACTOR

SE=me’®,  0<m<l1

I‘lzzrejq)’, o=<r<l.
Then, (22) becomes
m?q, +q, +2/q,q, mrcos (®, +9,)

1—m?

(28)

F'z:
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Minima of F, with respect to @, are obtained when ®, + ®,
=@2A+ 17, with A=0,1,2---. Thus for &, =@, =C2A+
)a—@,, F, becomes

F. = m?q, +4, =219, mr )

zmin —

28a
1—m? (282)
It is easy to see that F,,,, has an absolute minimum value
(F,op) as function of m: differentiating F,,;, with respect
to m and equating the differential to zero will lead to the
condition for a value of m for which F,_;, becomes opti-
mum. Denoting this value of m as m,, one finds after some
algebra

my=u—\u*—1 (29)
where the auxiliary quantity u is defined by

_ 1l atyg

u_
2r g,q,

provided r, ¢,, and ¢, are nonzero. Note that m is solely
dependent on the scalar values r, q;, and q,. F, is
determined by

(30)

. (Eopt_qz)(Eopt+ql)+r2qIQ2:0 (31)
or explicitly
1 \/uz——l
F;opt:_i (@2—q)+(q1+4,) u (31a)

with u given by (30).
It can be shown that F,
more compact forms

F = nad, —g

zopt me 1

. can also be expressed in the

(31b)

S or

I;;opt =4 mMyryqq; - (310)

Equation (31) is a direct proof of the property that the
radius of the circle for the optimum noise figure is zero. To

show this, one only has to equate yM+|Q|* to zero and
set F,=F,,,, whence (31) follows. Interestingly, at this

optimum value, (24) leads to (31b) by recalling that m, =
ISZOZIOPI =|Q| for F, :I:;opt'

VIII. THE MEASUREMENT OF THE CHARACTERISTIC

NOISE PARAMETERS

The measurement of the noise wave parameters is easily
accomplished with the use of a noise factor measuring set
and a lossless matching network with adjustable reflection
coefficient (e.g., double slug tuner) at the input of the
device under test.

With the input terminated in the characteristic imped-
ance (Z,=Z) one has m=0, whence from (28)

g, =F, =F,(m=0). (32)

Besides being obvious, this result is noteworthy because it
states that the characteristic noise parameter g, is identical

* with the excess noise factor obtained with the ordinary

resistive termination at the input. In the next measurement,
one determines with m0 the angle @, for which F,
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Fig. 6. Noise factor versus phase of S%

becomes F, . and then m (keeping ®, =@, constant) for
which F, ;. becomes F, .. With the two results (m, and
F, ) obtained and g, already determined, one computes
g, and r from

D _F;opt
Q= T ~Fopt (33)
+
r= 4 9, my (34)

V442 1+m(2) .

If required, @, is found from ®, =7 —®,. It must be noted
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that the parameter ¢, is sensitive in regard to the accuracy
in measuring m,, the optimum magnitude of the reflection
coefficient. Unfortunately, the minimum of F, as function
of m is not sharply defined allowing for a potentially large
error in determining m,,. This is best illustrated by comput-
ing and plotting F, versus m according to (28), as shown in
Fig. 5, with @, ¢,, and r being kept constant and ¢,
deliberately being varied. As is seen, for any given g,, the
noise factor attains its minimum within 0.012, correspond-
ing to a variation of 0.05 dB, over a substantial range of m.
(This is, of course, an advantage for the designer because it
allows for a larger margin in realizing the required match-
ing network.) The magnitude of the correlation factor 7 is
considerably less sensitive to errors in m,,. Typically, low-
noise GaAs FET’s (WE type 103) measured at 2 GHz
exhibit values of ¢, between 0.6 and 0.8; the other parame-
ters determined for this device are g, =0.78 and r=0.96, as
shown on Fig. 5. The optimum phase angle also has a fairly
broad minimum as is seen from Fig. 6 showing the vibra-
tion of F, as function of the phase of Sj, with m as a
parameter.

IX. Lossy MATCHING NETWORKS

Equation (22) made use of the “lossless” condition
S389*=1—S5S%* of the matching network. However, in
most applications this is not true at microwave frequencies
because of losses due to dissipation and radiation. As
shown in the Appendix, one can account for these losses by
introducing the dissipation factor

d} =1-(SSH*+5550*). (35)
Obviously, 0<d2<1; d} =0 corresponds to the lossless
case. The internal dissipation losses of the matching net-
work indicate the existence of thermal noise which must be
accounted for by adding independent noise sources as
depicted in the signal flowgraph of Fig. 7 (B,; and B,,). In
the Appendix it is shown that these sources have the
magnitude

| By |=d\V2kTyAf and | By, |=dy2kTyAf
with d, defined similar to (35) and T, being the absolute
temperature of the matching network. Compared to (18),
the departing noise wave at the output then becomes
Sai
1- Szoz Sn
Under the assumption that the lossy network is at standard
temperature (Ty =T;) and applying the same procedures

as outlined in Section V, the excess noise factor is now
derived as

d?+m?q, +q, +2yq,q, mrcos(®,+®,)
1—d? —m?
Note that the noise factor of the lossy matching network

alone can be computed from (37) by setting g,, ¢,, and r to
zZero:

= (B, +SYB, +S)B,, +B,). (36)

E= . G7)

1—m?

F _—
1—d3 —m?

network
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Fig. 7. Signal flowgraph of cascade of lossy noise nﬁatching network and
active two-port.

TABLE1
CHARACTERISTIC NOISE PARAMETERS (WE 103A GaAs FET at

2 GHz)

d?=0 df =0.056

(D.L. = 0dB) | (D.L. = 0.25 dB)

q, = 0.722 q; = 0.660

q, = 0.862 q; =0.756

r = 0.923 r = 0.972

This is a well-known result for m=0.,

It is seen from (37) that the measurement of F,, in the
presence of dissipative losses in the matching circuit, will
lead to different values of the noise paraméters. In place of
(32)—(34) one finds the new set

9, :F;O(1~d22)—d22

_ (l—d%)(EO_Eopt) |
Us 2 —I;‘zopt
My

(38)

(39)

and

my

_dit(-date,
1—d3f-m?

V419>

where F,q, F,,, and m are defined as before.

A numerical example will illustrate the effect of these
changes. A WE 103A low-noise GaAsFET ‘kvas matched at
about 2 GHz for minimum noise figure using a matching
network with 0.25-dB dissipation loss; i.e., @? =0.056. The
minimum noise figure was found to be NF, =14 dB
(F, opr =0.38) for m, =|S5|=0.66. With a matched source,
the noise figure was 2.70 dB ( F,, =0.86). Table I compares
the values of the noise parameters calculateq from (38)-(40)
(lossy case) to those obtained with (32)—(34) (lossless case).
As one might expect, the parameters g, and q, decrease if
one accounts for losses while the correlation between them
(r) increases. If this same device could be matched with a
perfectly lossless circuit, its optimum matéhing reflection
coefficient as calculated with (29) and (30) ;would be my=
0.78. The corresponding optimum noise figure computed
from (31a) becomes NF,,=0.87 dB. This is to be com-
pared with the measured value of 1.4 dB. Simply subtract-
ing 0.25-dB dissipation loss from 1.4 dB would still leave a
substantial error of almost 0.3 dB. It is essential, therefore,

to carefully account for dissipative losses in matching

(40)
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circuits when evaluating and characterizing very low-noise
devices.

X. . CONCLUSION AND SUMMARY

It is shown how noise as a stationary stochastic process
can be approximated by an infinite series of scattered
waves. Each partial wave represents spot noise. Therefore,
the scattering matrix formalism as well as signal flow graph
analysis for linear networks and systems can be extended
to include the analysis of spot noise. The noise waves lead
to a new set of characteristic noise parameters of noisy
two-ports. These parameters are based on the inherent
noise waves which emanate from each port and which
correspond directly to the available noise power and their
cross correlation.

With these parameters, the theory of minimizing ampli-
fier noise by noise matching is straightforward, and the
definition of circles of constant noise figure in the Smith
Chart is simple. The effect of lossy matching networks on
the noise figure of amplifiers is shown to be more signifi-
cant for typical low-noise microwave GaAsFET’s than
ordinarily assumed.

APPENDIX

THERMAL NOISE FROM PASSIVE Lossy TwO-PORTS

A linear, reciprocal, and lossy two-port can be repre-
sented by a passive network of ideal RLC elements. Obvi-
ously, all losses are then caused by the discrete resistors.
This being the case, each resistor will, in general, cause
thermal noise to appear at all ports. As indicated in Fig. 8§,
one can visualize these resistors to be connected to extra
ports such that the resulting network, exclusive of the
resistors, is lossless. The resistor R at the jth port is the
source of a spot noise wave which according to (10) has the

magnitude
1B, 1=y (1=1p,|?) -2kTA7

where p; stands for (R; —Z)/(R;+Z) in accordance with
(8). Thus with N sources in the network, the first two
scattering wave equations can be written as follows:

N+2

B =S;4;+Sp4,+ 2 Sljvl_|PJ|2'\/2k7;Af
J=3
N+2

B, =8y 4, +SpAy+ 3 S,V 1—|pj|? -2kTAf.
Jj=3

(A1)

Because the internal source waves are uncorrelated, the
noise power in the departing waves due to the internal
sources only is then

N4+2

1E(BBYy= 3 IS, P(1—|p2) kT Af
J=3
N+2

1E{B,B3}= 3 IS,,(1—|p?) kT AL
J=3
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Fig. 8. Partitioning of a lossy two-port into a lossless network and N
resistive terminations.

Obviously, for noise power calculations the phases of S;;
and S, ; are irrelevant and (A1) can also be expressed as

N+2
B =S, 4, +Spdy+1) 2 185,12 (1—15)2 2kT;A f
j=3

N+2

3 18,2 (111 2AT,AS
J:

(A2)

If the temperature within the network is uniform, i.e., if all
resistors R are at the same temperature Ty, and since we
assumed reciprocity, i.e., S;;=S;;, (A2) can be simplified
significantly:

Bl:SllAl+S12A2+‘/1_‘S11|2_|SIZ|2 V2kTyAf
32=S12A1+S22S2+‘/1_|S12|2_IS22‘2 V2kTyAf.
(A3)

To prove the validity of (A3), we apply sinusoidal signals
to port 1 and port 2 and compute that portion of the power
from these signals which is dissipated in the jth resistor

de:%E{Bij*}-%E{AjA;}:7|Bj|2—%|Af|2'

Because 4, = ijj, this becomes
o =3B (1-1p?)-
B;, however, is related to the incident waves 4, and 4,
through
B;=8,4,+S,4,
whence
Par=ISu* (1= 16317 31 40> 18> (1= o, )31 4o .

J g1 gy /214 j2 )22
The total power dissipated in the N resistors is then simply

N+2

Pa= 2 {1812 (1=1p) } 314,
N+2
+ 3 {IsaP(1-1of)} 2140 (A9)

This power must be equal to the total power incident less
the total power departing:

Pd:%(|A1l2+|A2|2_|Bl|2_|32|2)'

1003

Using (A1) this yields for the sinusoidal waves
Pd=(1_|S11i2—|S12l2)%‘A1|2
+ (1 ‘"|Szl|2 _|Szz|2)%|Az|2- (AS)

Thus with §;;=S;; and by compaﬁng (A4) and (AS), we
find

N+2
> 18, 1H(1=1p,|2) =118, 2~ S|
j=3

and
N+2
3 15,171 ley 1) =110~ 18x
=

With this result the proof of (A3) is complete.
It is convenient to use in (A3) the abbreviations

dlz\/1_|811|2_|512|2

and

d2:‘/1‘|512|2_|522|2~

These quantities may be computed from known dissipation
losses using the definition

DL=—10log(1—d?)dB.

Note that the dissipation losses depend on the direction of
transmission. With d, and d, defined, (A3) becomes

B, =84, tS1,4, +dy2kTyAf

B, =8,A4,+ 8y A, +d2kTyAf . (A6)
Using (A6) in a spot noise analysis one can correctly
account for thermal noise from linear, reciprocal, and lossy
two-ports provided the temperature within is uniform and
known.
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Performance of Optically Coupled
Microwave Switching Devices

RICHARD A. KIEHL, MEMBER, IEEE, AND DAVID M. DRURY MEMBER, IEEE

Abstract—The performance of optically coupled microwave switching
devices for pulse generation or other applications is detailed. The bias
dependence of the RF power transfer is presented for a range of operating
frequencies, thereby establishing the bias conditions required for a given
ON/OFF ratio and insertion loss. Limits on peak RF power level and pulse
repetition rate, as well as limitations arising from harmonic distortion and
shot noise, are also examined. :

I. INTRODUCTION

HE RECENT EMERGENCE of solid-state optical de-

vice technology has made possible new microwave de-
vices that are hybrids of conventional microwave technol-
ogy and the newer optical technology. For the most part,
such devices proposed to date use lightwaves to control the
behavior or regulate the characteristics of some microwave
element, be it an oscillator [1], [2], a switch [3], [4], or some
other microwave device [5]. However, one can also envision
a new class of microwave components wherein lightwaves
are used not for control, but rather for the coupling of
microwave energy from one point to another. Thus light-
waves would be used in a fashion analogous to that of the
“opto-isolator” employed in lower frequency circuitry for
some time.
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A component of this type was recently proposed by
MacDonald and Hara [6], [7] for use as the crosspoint
element in a video-signal switching array. The switch was
based on the detector-bias dependence of the coupling
between an optical source/detector pair. A very attractive
feature of this switch for such RF signal routing is that it
confines the RF energy to a narrow optical path. This
allows the achievement of nearly zero signal cross-coupling
even in highly compact switching arrays.

Independent of this work, we proposed [8] the same
switching concept as the basis of a microwave gate for
pulse generation and other applications. Here, the at-
tractiveness of the switch results from its extremely high
ON /OFF ratio and reverse isolation, as well as from the fact
that its input impedance is completely independent of
switching state. In pulse radar applications where a switch
is used to gate a microwave source, for example; a high
ON/OFF ratio and a high reverse isolation can lead to
improvements in sensitivity and jamming immunity. A
state-independent input impedence means that the problem
of oscillator “pulling” is eliminated, which is crucial in
phase-sensitive radar designs.

In the present paper, we report experimental results on
the performance of such optically coupled microwave
switches relevant to a variety of applications. We begin in
Section II by considering RF power-transfer capability
which determines the ultimate insertion loss of the switch.
In Section III, we examine the ON/OFF ratio achievable
under various operating conditions. Section IV deals with
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