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Analysis of Linear Noisy Two-Ports Using
Scattering Waves

RUDOLF P. HECKEN

In honor of Profi H. Doring (Aachen, W. Germany) who celebrated his 70th birthday in 1981

,4 bstract— This paper proposes a new approach to the use of scattering

waves for spot noise analysis of linear N-ports. Noise as a stationary,

stochasticprocessis approximated by an infinite series of partial noise
waves. ‘f’his aflows the use of the seattenng matrix formalkm and signal

flowgraph theory. The noise waves lead to a new set of three dimensionless,

characteristic noise parameters. Methods to determine these parameters

are simple. With these parameters, the theory of noiw minim~ation is

straightforward and the definition of constant noise circles uncomplicated.

The effeet of losses in noise matching networks is shown to be more

significant in very low noise amplifiers than usually assumed.

I. INTRODUCTION

HE THEORY OF noisy, linear two-ports k well estab-

lished and has provided the basis for optimizing the

performance of low-noise amplifiers. Especially in the mi-

crowave frequency range, this theory is very powerful in

design and evaluation of devices and amplifiers. The repre-

sentation of spot noise’ in terms of scattering waves is not

new [2]–[4], [7] but the theory has been based on the

classical work by Rothe and Dahlke [1] who arrive at an

impedance or admittance representation of noise parame-

ters. In this paper we will present briefly, an independent

derivation of noise waves based on terminal voltages and

currents as stationary stochastic processes. This approach

leads to a new set of characteristic noise parameters and to

simple methods of determining them experimentally. With

these parameters, the theory of minimizing amplifier noise

by noise matching is straightforward, and the definition of

constant noise circles [8] in the Smith chart is very simple.

Moreover, it is shown that even small resistive losses in

matching networks can significantly increase the noise

figure of amplifiers using very low-noise microwave GaAs

FET’s.

- First we deal with the derivation of spot noise waves and

the formulation of scattered noise waves for linear N-ports.

This theory is then applied to the single complex imped-

ance and to the linear, noisy two-port (Sections IV and V).

This leads us to the familiar circles of constant noise factor

(Section VI) and to the theory of noise minimization

(Section VII). In Sections VIII and IX, we explain a simple

measurement method of the noise parameters and investi-
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1The term “sDot noise” is used here in accordance with the definition in

gate the effect of losses in matching networks on the

optimum noise figure.

II. NOISE WAVES AS STATIONARY STOCHASTIC

PROCESSES

The terminal voltages and currents at an arbitrary port

of a linear N-port are defined in Fig. 1. We assume both as

stationary stochastic processes and form two new processes

defined by the linear transformation

a(r)= *(o(t) +Zi(t))/@ (la)

b(t)= ~(v(t)–Zi(t))/@ (lb)

where Z is a time-independent normalizing quantity with

the dimension of an impedance. It is well known that tr(t )

and i(t) can be approximated by the series [5]

-1
+02

‘(’)=F.=FW‘e’”’”’ (2a)

and

-1 ‘m‘(’)=Fn=FcmIneJnA”’(2b)

with the complex coefficients V. and I. being orthogonal

and uncorrelated, i.e., E{V.V~} = O and E{lnlj} = O for

n #m, where E{. } denotes statistic~ expectation. The

approximation can be made arbitrarily close by letting Ati

approach zero. Combining (2) with (1) shows that a(t) and

b(t) are then also approximated by two series of the same

form

-1 ‘ma(t)=T.=2mAne’nA”’
and

-1 ‘mb(t)=Fn=%Bne’nA”’
where the coefficients An and B. are related

I. by

A~=;(~+ZI.)\@

(3a)

(3b)

to the V. and

(4a)

(4b)

[6]. ‘ They are, therefore, also complex, orthogonal, and uncorre-
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Fig, 1. Definition of currents and voltages of a linear N-port.

lated: _E{A~Afi} and E{ BmBJ} = O for n #m. Equation (4)

is identical to the standard definition of scattered waves for

sinusoidal processes. According to (3), a(t) and b(i) can,

therefore, be interpreted as two processes which consist of

an infinite sum of scattered noise waves with complex

amplitudes A. and B. located on the frequency axis at

n. Ati. The noise properties of a linear N-port can thus be

studied at any frequency spot n. Aa using the scattering

matrix formalism developed for single-frequency excita-

tion.

111. NOISE ANALYSIS WITH THE SCATTERING

MATRIX

In the following, we will introduce the new notation

A =A~ =A(nAu) and B=B~ =B(nAti), thus omitting the

subscript n. It is well known that for a linear N-port the

departing wave B, at an arbitrary port i (i= 1,2,. ... N) is

related to all incident waves A, (j= 1,2,. ... N ) through the

scattering coefficients Sij, evaluated in our case at n. Au.

However, because of inherent noise sources in the noisy

N-port, we have to assume that in general all departing

noise waves will contain components which are indepen-

dent of all incident waves. Denoting this independent,

departing noise wave at port i by Bq,, the complete set of

linear equations relating the noise waves can be written as

B1 =S1lA1 +S12A2+ . . .SINAN+Bql

Bz =S21A1 +S22A2 + . . .S2NAN +Bq2

BN=SNIA1 +SN2A2 + “ “ “SNNAN+B qn - (5)

In matrix notation (5) is written as

[B]=[S]. [A]+[Bq]. (6)

[A], [B], and [Bq] are N-element column matrices, and [S]

is an NX N square matrix. In general all wave sources are

correlated.

IV. APPLICATION TO A SINGLE COMPLEX

IMPEDANCE

In the case of a single complex impedance Z., used as a

one-port as shown in Fig. 2a, (5) reduces to

B= S,.A+B qs (7)

++

?_.J-V. - v
EQUIVALENT SOURCE VOLTAGE

1
Vo ‘ 4kTSAf (ZS + Z$”)

(a)

1 B
‘qs= -“m’% s

1

55 z~- z
ss=—

A z~+z

(b)

Fig. 2. Noise wavesof a complex impedance. (a) Definition of source
voltage. (b) Signafflowgraph of the one-port noisesource.

with S~ being the internal reflection coefficient

Z,–z

‘s= 2,+2
(8)

and Z the normalizing impedance as before. From Nyquist’s

theorem [5] we know that the open-circuit noise voltage at

the terminals is given by

VO=@~2k~A~ (Z. +Zf) (9)

where Z; is the complex conjugate of Z,, k the Boltzmann

constant, T, the absolute temperature of the impedance,

and Af the effective bandwidth. (The factor @ stems from

the definition of the complex coefficients in (2) and (3) as

“peak values.”) Applying the transformation (4) to the

terminal quantities V and 1 yields for the equivalent noise

wave

Fig. 2(b) shows a signal flowgraph representation of the

complex impedance. Note that the average power in the

departing noise wave Bq, is given by

Pd=+~{BqsB;s} =k~Af(l–lss12). (11)

Terminating the one-port with an impedance Z~ at T= O K

yields the relations

A=pL. B

and

B= ‘qs
1–pLs.

where pL is the terminating reflection coefficient

2=–2
pL=ZL+Z.

The noi!

or with

s power absorbed in Z~ is thus given by

~abs ‘@{~B*} ‘l~{AA*}

11), (12), and (13)

(l-s, s:)(l-pLp:)
~ab,=k~Af(l–s~pL)(l–S:p~) “

(12)

(13)

(14)

(15)
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The maximum available noise power kT~ A f is delivered to

the “cold” load Z~ if p~ = S: or Z~ = Z:.

V. THE NOISE FACTOR OF A LINEAR NoIsY

TWO-PORT

A case of great interest to the design engineer is the

noise analysis of linear amplifiers. A basic circuit is shown

in Fig. 3. In this configuration, the active, linear two-port is

connected via a lossless “noise matching network” to a

source with impedance Z. at standard temperature TO and

terminated with a cold2 load impedance Z~. The analysis is

simplified by using signal flow graphs as shown in Fig.

3(b). Here the S’; are the scattering coefficients of the

matching network and the S1l those of the active two-port

as given by (5) with N= 2. S, and p~ are the reflection

coefficients of the source and load, respectively. We will

assume further that the source impedance Z, and the load

impedance Z~ are purely resistive and equal to the normal-

izing impedance Z. This simplifies the discussion and

corresponds to the practical situation in which device and

network parameters are determined under well-matched,

specific impedance conditions. With this choice, S,= O and

p= =0.
The departing noise wave B2 at the output becomes by

inspecting Fig. 3(b)

B2 =Bq2 + ‘;2s2’ Bql +
s;,s2,

Bq, .
1–s;2s11

(16)
l–s}s,l

It is advantageous to introduce the linear transformations

Bql =S11BZ2 +Bll (17a)

Bq2 =S21Bi2 (17b)

into (16), thus referring the noise wave B2 to equivalent

noise sources at the input of the noisy two-port. With this

step, which is analogous to the procedure developed in [1],

one obtains a simple relation showing more clearly the

interaction between the noisy two-port and the matching

network

B2 = ’21 [S;2Bi1 +Bi2 +S:lBq,] . (18)
l–sgs,,

It is obvious that the newly defined, equivalent noise

sources, B, ~ and Bi2, also are, in general, correlated (as are

Bq, and B~2). Therefore, it is principally possible to mini-

mize their contribution by properly adjusting S& of the

input matching network. This is conveniently shown by

means of the noise factor. Since the available noise power

is given by

p2=*E{B2B; }

the noise factor F as defined in [6] becomes, in terms of
(18),

‘S+=IIIEm“
(a)

~’42

1 A, s!’, s 2!

s~

B,

S;2

(b)

Fig. 3. Noise matching of an active linear two-port. (a) Block diagram.
(b) Associatedsignafflowgraphs.

This expression can be simplified by introducing the nor-

malized quantities

~{%R}
(?1=

*}E{BqsBqs

and

~{Bz2B:}q2 =

*}”E{ Bqs Bqs

The cross-correlation terms E{ BilB~}

(20a)

(20b)

and E{ B:B,2} will
be replaced by introducing the complex cross-correlation

factor

r,2 =
‘{ BilB3} . (21)

E{ Bi1Bfi}E{Bi2Bfi}

With (20a), (20b), and (21) the noise factor becomes

s:xi?hl +qz + G(w?2 + IY2S%)
F=l+

1– s.&s&*
. (22)

Note that we made use of the condition S~lSfl* = 1– Sj2S)!*

assuming that the matching network is lossless. The non-

negative, real parameters q, and q2 and the complex corre-

lation factor 1712are inherent to the noisy two-port. They

are characteristic of the noise behavior and have, therefore,

fundamental importance.

VI. CIRCLES OF CONSTANT NOISE FACTORS

In the following, we will show that (22) defines the

familiar circles of constant noise factors [8] in the complex

E{ B,2B~} + Sj2S/2*E{Bi1Bfi } +Sf2E{BilB% } +S~!*E{B3B12}
F=l+

S;#&*E{Bq,B;s }
(19)

2The assumption made here of a “cold” load impedance is not neces- plane of the output reflection coefficient S~2. For conveni-

sary. However, it simplifies the argument considerably. ence we introduce the “excess” noise factor F= = F– 1 and
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Fig. 4. Circles of constant noise figure.

rearrange (22) as follows:

S; S&*+ Q*S&*+QS;2=M (23)

where the complex quantity Q and the real value M stand

for

Q.~,2g

z

~=&–q2

Fz+ql “

Equation (23) can also be written in the form

(S&+ Q*)(S;, +Q*)*=M+lQ12

from which the desired result immediately follows:

S~l = – Q* + /-eJ~

(24)

(25)

(26)

(27)

with ~ being an arbitrary angle. Equation (27) defines the

location and radius of a family of circles in the plane of S~2

which are solely dependent on the given noise factor F and

the characteristic noise parameters of the two-port. The

centers of these circles are located at S~ = – Q* and their

radii are given with ~=. Examples are shown in

Fig. 4 with the noise figure (NF) being the noise factor in

decibels (i.e., NF = 10log F).

VII. THE OPTIMUM NOISE FACTOR

The lowest, optimum noise factor FOP,(or F,OPt=FOPt – 1)

is conveniently found by using a complex phasor notation

for S% and r12

s: = ~ej~,, ()<~<1

rlz =re@r, ()<~<1.

Then, (22) becomes

F = m2q1 +q2 +2@mrcos (@,+@,)
z

l–m2
(28)

Minima of FZ with respect to @, are obtained when @,+ O.

=(2 A+I)T, with A=0,1,2. “ . . Thus for 0,=0,0 =(2A+

l)n – @,, F= becomes

mzql +q2 —2{q1q2 mr
F,tin =

l–m2 “
(28a)

It is easy to see that F,tin has an absolute minimum value

(l&) as function of m: differentiating &ti. with respect
to m and equating the differential to zero will lead to the

condition for a value of m for which F, Mm becomes opti-

mum. Denoting this value of m as m., one finds after some

algebra

Fmo=u– u –1 (29)

where the auxiliary quantity u is defined by

U=J !72+%
2r &

(30)

provided r, ql, and q2 are nonzero. Note that m. is solely

dependent on the scalar values r, q,, and q2. F, Opt is

determined by

(Eopt-q2)(Eopt+ ql)+r2q,q2=o (31)

or explicitly

F -!

[

R (,,a)
Zopt — 2 (q2–%)+(%+q2) u

1

with u given by (30).

It can be shown that

more compact forms

F,OPt can also be expressed in the

—
riqlq2

F =—–zopt m. !lI (31b)

or

F,.pt =q2 ‘mOnkZ. (31C)

Equation (31) is a direct proof of the property that the

radius of the circle for the optimum noise figure is zero. To

Fshow this, o~e only has to equate M+\ Q \ to zero and

set F, = F,OPt, whence (31) follows. Interestingly, at this

optimum value, (24) leads to (3 lb) by recalling that m ~ =

VIII. THE MEASURENIBNT OF THE CHARACTERISTIC

NOISE PARAMETERS

The measurement of the noise wave parameters is easily

accomplished with the use of a noise factor measuring set

and a Iossless matching network with adjustable reflection

coefficient (e.g., double slug tuner) at the input of the

device under test.

With the input terminated in the characteristic imped-

ance (Z, = Z) one has m= O, whence from (28)

q2=%=E(m=o). (32)

Besides being obvious, this result is noteworthy because it

states that the characteristic noise parameter qj is identical

with the excess noise factor obtained with the ordinary

resistive termination at the input. In the next measurement,

one determines with m # O the angle Q,. for which Fz
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that the parameter ql is sensitive in regard to the accuracy

in measuring m ~, the optimum rnagnitucle of the reflection

coefficient. Unfortunately, the minimum of Fz as function
Fz F I H~ of m is not sharply defined allowing for a potentially large

error in determining mo. This is best illustrated by comput-
08

06

04

02

0

q, .06

0.8

(! m=l S;21

o 0.2 0,4 0.6 0.8 1.0

Fig. 5. Noise factor versus magnitude of S/’.

3.3 \ //

~---%t= 0=

I&o Q,

0° -60° –30° O +304 +6& +904 +120° +150. +180° +210° +240°+

Fig. 6. Noise factor versus phase of Sj2

becomes Fzti, and then m. (keeping O.= 0,0 constant) for

which Fz&n becomes FzOPt. With the two results (m ~ and

F.OPt) obtained and qz already determined, one computes
ql and r from

-.
ing and plotting F, versus m according to (28), as shown in

Fig. 5, with 0,, qz, and r being kept constant and ql

deliberately being varied. As is seen, for any given ql, the

noise factor attains its minimum within 0.012, correspond-

ing to a variation of 0.05 dB, over a substantial range of m.

(This is, of course, an advantage for the designer because it

allows for a larger margin in realizing the required match-

ing network.) The magnitude of the correlation factor r is

considerably less sensitive to errors in m.. Typically, low-

noise GaAs FET’s (WE type 103) measured at 2 GHz

exhibit values of ql between 0.6 and 0.8; the other parame-

ters determined for this device are qz = 0.78 and ~= 0.96, as

shown on Fig. 5. The optimum phase angle also has a fairly

broad minimum as is seen from Fig. 6 showing the vibra-

tion of F= as function of the phase of S~2 with m as a

parameter.

IX. LossY MATCHING NETWORKS

Equation (22) made use of the “lossless” condition

Sjl S~l* = 1 – S~2S~z* of the matching network. However, in

most applications this is not true at microwave frequencies

because of losses due to dissipation and radiation. As

shown in the Appendix, one can account for these losses by

introducing the dissipation factor

d;= 1– (sj,s;l*+s’g&’*). (35)

Obviously, O<d~41; d;= O corresponds to the lossless

case. The internal dissipation losses of the matching net-

work indicate the existence of thermal noise which must be

accounted for by adding independent noise sources as

depicted in the signal flowgraph of Fig. 7 (B,l and B,z). In

the Appendix it is shown that these sources have the

magnitude

lB~ll=dl~m and ll?,,l=d,~m

with d, defined similar to (35) and TN being the absolute

temperature of the matching network. Compared to (18),

the departing noise wave at the output then becomes

Under the assumption that the 10SSYnetwork is at standard

temperature (TN = TO) and applying the same procedures

as outlined in Section V, the excess noise factor is now

derived as

F = d: +m2q1 +q2+2Gmrcos(@r+@, )

qz – Fzopt _ ~___
., (37)

0. = (33) z l–d~–m2
., ‘“p, ./

mjj Note that the noise factor of the Iossy matching network

r= q, +q2 m.
(34)

alone can be computed from (37) by setting ql, q2, and r to— .

hi l+mi”
zero:

Fnetwork = ‘z + 1 =
l–m2

If required, @, is found from Q, =T – @,O. It must be noted l–d~–m2”
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Fig. 7. Signatflowgraph of cascadeof lossynoise.
active two-port.

TABLE I
CHARACTERISTIC NOISE PARAMETERS (WE 103A

2 GH2)

d;=O d;= 0,056

(D.L. = O dB) (D.L. = 0.2.

q, = 0.722 q, = 0.660
q2 = 0.862 qz = 0.756

T = 0.923 r = 0.972

This is a well-known result for m= O.

It is seen from (37) that the measuren

presence of dissipative losses in the mat

lead to different values of the noise paran

(32)-(34) one finds the new set

q2=F20(l–d; )–d;

o-w%-%pt)
(l] = —

m$

and

d;+(l–d; )q, +q.’ 1
rz .—

G l–d

where F,., F,OPt, and m ~ are defined as b

A numerical example will illustrate th

changes. A WE 103A low-noise GaAsFIY

about 2 GHz for minimum noise figure 1

network with 0.25-dB dissipation loss; i.e.

minimum noise figure was found to b~

(~Op, =0.38) form. = IS% I =0.66. With a

the noise figure was 2.70 dB (Fzo = 0.86). ‘

the values of the noise parameters calculatl

(lossy case) to those obtained with (32)-(;
As one might expect, the parameters ql a

one accounts for losses while the correlati

(r) increases. If this same device could b{

perfectly lossless circuit, its optimum m{

coefficient as calculated with (29) and (30

0.78. The corresponding optimum noise

from (3 la) becomes NFOPt = 0.87 dB. T1

pared with the measured value of 1.4 dB.

ing 0.25-dB dissipation loss from 1.4 dB v

substantial error of almost 0.3 dB. It is es

to carefully account for dissipative 10S
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thing network and

IAS FET at

7
B)

I
-J

M of F,, in the

ng circuit, will

ers. In place of

(38)

opt (39)

(40)
-m~

me.

affect of these

~as matched at

ng a matching

‘~ =0.056. The

WFOP,= 1.4 dB

latched source,

ble I compares

from (38)-(40)

(lossless case).

qz decrease if

between them

latched with a

hing reflection

rould be m. =

;ure computed

is to be com-

mply subtract-

ed still leave a

Ltial, therefore,

; in matching

circuits when evaluating and characterizing very low-noise

devices.

X. CONCLUSION AND SUMMARY

It is shown how noise as a stationary stochastic process

can be approximated by an infinite series of scattered

waves. Each partial wave represents spot noise. Therefore,

the scattering matrix formalism as well as signal flow graph

analysis for linear networks and systems can be extended

to include the analysis of spot noise. The noise waves lead

to a new set of characteristic noise parameters of noisy

two-ports. These parameters are based on the inherent

noise waves which emanate from each port and which

correspond directly to the available noise power and their

cross correlation.

With these parameters, the theory of minimizing ampli-

fier noise by noise matching is straightforward, and the

definition of circles of constant noise figure in the Smith

Chart is simple. The effect of lossy matching networks on

the noise figure of amplifiers is shown to be more signifi-

cant for typical low-noise microwave GRAsFET’s than

ordinarily assumed.

APPENDIX

THERMAIL NOISE FROM PASSIVE LossY TWO-PORTS

A linear, reciprocal, and lossy two-port can be repre-

sented by a lpassive network of ideal RLC elements. Obvi-

ously, all losses are then caused by the discrete resistors.

This being the case, each resistor will, in general, cause

thermal noise to appear at all ports. As indicated in Fig. 8,

one can visualize these resistors to be connected to extra

ports such that the resulting network, exclusive of the

resistors, is lossless. The resistor R, at the jth port is the

source of a spot noise wave which according to (10) has the

magnitude

{1~,,1= (WI’) “p@7
where pj stands for ( Rj – Z)/(Rj + Z) in accordance with

(8). Thus with N sources in the network, the first two

scattering wave equations can be written as follows:

B2 =S21A1 i- S22A2 -1-‘~2S2Jm . {~.
j=3

(Al)

Because the internal source waves are uncorrelated, the

noise power in the departing waves due to the internal

sources only is then
N+2

;E{BIB~} = ~ ]S,,12(1 ‘Ipjl’) .kqAf
,=3

N+2

+E{B2,B;} = ~ 1S2,12(1–Ip,l’) .k~Af.
,=3
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RN+2

D

““” t i

Bi A, I-A,

_ B2

LO SSLESS NETWORK

Fig. 8. Partitioning of a lossy two-port into a lossless network and N
resistive terminations.

Obviously, for noise power calculations the phases of Slj

and S2j are irrelevant and (Al) can also be expressed as

‘,=s11A1+s12A2+~

‘2 =S21S1 +S22’2 +

~

(A2)

If the temperature within the network is uniform, i.e., if all

resistors Rj are at the same temperature TN, and since we

assumed reciprocity, i.e., Sij = Sji, (A2) can be simplified

significantly:

‘,=s1,’1+s,2’2 +/1–1s1112–1s12[2“@m7

‘2=s,2’1+s22s2 +/1–[s,212–1s2212 ./=.

(A3)

To prove the validity of (A3), we apply sinusoidal signals

to port 1 and port 2 and compute that portion of the power

from these signals which is dissipated in thejth resistor

Pdj=*~{BjB~} –*~{AjA~} =*1 Bj12–+lAj12”

Because AJ = pjBj, this becomes

Pdj=~lBj12(l_l~j12).

Bj, however, is related to the incident waves A, and A2

through
Bj=$,A, +sj2A2

whence

~dj=l$112(1 –\ Pj12)}lA112 +l$212(1– l~j12)*lA212”

The total power dissipated in the N resistors is then simply

N+2

~ci= ~ (1$112(1–lPJ12))+l’d2
~=3

Nh2

+ ~ {ly212(l –lPj12)} ~1’212. (A4)

~=3

This power must be equal to the total power incident less

the total power departing:

Pd=+(1’~[2+1’212–1’,12–\’2\2).

1003

Using (Al) this yields for the sinusoidal waves

~d=(l–lS,~[2–\S12[2)il’112

+(1–1S2112 –1S2212);1’212. (A5)

Thus with Sij = $i and by comparing (A4) and (A5), we

find

N~2

2 IS,,12(1-IP,12) =1-IS,112-IS,212
j=3

and

N~2

X ls2J12(1-lPj[2) =l-lS~212-lS2212.
j=’3

With this result the proof of (A3) is complete.

It is convenient to use in (A3) the abbreviations

dl=&l S1112-l S1212

and

d2=@lSlz12-lS2212.

These quantities may be computed from known dissipation

losses using the definition

DL=–1010g(l–d2)dB.

Note that the dissipation losses depend on the direction of

transmission. With d, and d2 defined, (A3) becomes

‘1 =S1l’l +S12’2 +dl{m

‘2 =S12’1 +S22’2 +d2~_ . (A6)

Using (A6) in a spot noise analysis one can correctly

account for thermal noise from linear, reciprocal, and lossy

two-ports provided the temperature within is uniform and

known.
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Performance of Optically
Microwave Switching Devices

Coupled

RICHARD A. KIEHL, bfHktIrER, IEEE, AND DAVID M. DRURY MEMEER, IEEE

A bstract-llle performance of optically coupled microwave switching

devices for pulse generation or other appffcations is detaifed. The bias

dependence of the RF power transfer is presented for a range of operating

frequencies, thereby establishing the bias conditions required for a given

ON/OFF ratio and insertion loss. Limits on peak RF power level and puke

repetition rate, as well as fimitations arising from harmonic distortion and

skot noise, are atso examined.

I. INTRODUCTION

T HE RECENT EMERGENCE of solid-state optical de-

vice technology has made possible new microwave de-

vices that are hybrids of conventional microwave technol-

ogy and the newer optical technology. For the most part,

such devices proposed to date use lightwaves to control the

behavior or regulate the characteristics of some microwave

element, be it an oscillator [1], [2], a switch [3], [4], or some

other microwave device [5]. However, one can also envision

a new class of microwave components wherein lightwaves

are used not for control, but rather for the coupling of
microwave energy from one point to another. Thus light-

waves would be used in a fashion analogous to that of the

“opto-isolator” employed in lower frequency circuitry for

some time.
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A component of this type was recently proposed by

MacDonald and Hara [6], [7] for use as the crosspoint

element in a video-signal switching array. The switch was

based on the detector-bias dependence of the coupling

between an optical source/detector pair. A very attractive

feature of this switch for such RF signal routing is that it

confines the RF energy to a narrow optical path. This

allows the achievement of nearly zero signal cross-coupling

even in highly compact switching arrays.

Independent of this work, we proposed [8] the same

switching concept as the basis of a microwave gate for

pulse generation and other applications. Here, the at-

tractiveness of the switch results from its extremely high

ON/OFF ratio and reverse isolation, as well as from the fact

that its input impedance is completely independent of

switching state. In pulse radar applications where a switch

is used to gate a microwave source, for example, a high

ON/OFF ratio and a high reverse isolation can lead to
improvements in sensitivity y and jamming irnmunit y. A

state-independent input impedence means that the problem

of oscillator “pulling” is eliminated, which is crucial in

phase-sensitive radar designs.

In the present paper, we report experimental results on

the performance of such optically coupled microwave

switches relevant to a variety of applications. We begin in

Section II by considering RF power-transfer capability

which determines the ultimate insertion loss of the switch.

In Section III, we examine the ON/OFF ratio achievable

under various operating conditions. Section IV deals with
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